Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.11 Detail

Determination of catalase activity by KSCN coordination colorimetric method

Published on Oct. 31, 2025Total Views: 1456 times Total Downloads: 206 times Download Mobile

Author: SHAN Hongfang CHEN Ning ZHANG Aiju LI Hua ZHANG Xiaolin LI Xiaoqing

Affiliation: Department of Pharmacy, Gansu Medical College, Pingliang 744000, Gansu Province, China

Keywords: Catalase Hydrogen peroxide Potassium thiocyanate Color reaction Activity Ultraviolet-visible spectrophotometry MMicro detection

DOI: 10.12173/j.issn.2097-4922.202503094

Reference: SHAN Hongfang, CHEN Ning, ZHANG Aiju, LI Hua, ZHANG Xiaolin, LI Xiaoqing. Determination of catalase activity by KSCN coordination colorimetric method[J]. Yaoxue QianYan Zazhi, 2025, 29(11): 1846-1852. DOI: 10.12173/j.issn.2097-4922.202503094.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To established a new method for detecting catalase activity to address the issues of high detection limit, insufficient sensitivity, and poor stability of the colorimetric solution in the previous colorimetric method.

Methods  Fe²+ did not undergo color reaction with SCN-. However, when Fe²+ was oxidized to Fe3+ by H₂O₂, Fe³+ formed a Fe³+/SCN- complex with SCN- that exhibited maximum absorption at 458 nm. The absorbance was positively correlated with the concentration of H₂O₂. When catalase was present, it catalysed the decomposition of H₂O₂, resulting in a decreasing absorbance with time, and the rate of decrease (∆A/t) reflected the catalytic activity of the enzyme.

Results  The effective detection range for catalase activity was 20-400 U/L, with a minimum detection limit of 10 U/L.

Conclusion  This study is the first to use inorganic color reagents in photometry and construct an accurate, stable, and anti-interference method for measuring catalase activity through coordination reactions. This method is suitable for detecting trace enzyme activity and has good promotion and application value.

Full-text
Please download the PDF version to read the full text: download
References

1.陆灿, 姜翠玲, 冯亚坤, 等. 两种沉水植物对聚乳酸微塑料胁迫的生长和生理响应[J]. 环境科学学报, 2024, 44(1): 378-385. [Lu C, Jiang CL, Feng YK, et al. Growth and physiological response of two submerged plants to polylactic acid microplastic stresses[J]. Acta Scientiae Circumstantiae, 2024, 44(1): 378-385.] DOI: 10.13671/j.hjkxxb.2024.0216.

2.祁伟亮, 李梦, 乔义林, 等. 外源H2O2对甘蓝型油菜生长发育的影响[J]. 中国野生植物资源, 2024, 43(5): 46-51.[Qi WL, Li M, Qiao YL, et al. Effects of exogenous H2O2 on the growth and development of Brassica napus L.[J]. Chinese Wild Plant Resources, 2024, 43(5): 46-51.] DOI: 10.3969/j.issn.1006-9690.2024.05.007.

3.王金亭, 方俊, 主编. 生物化学实验教程. 第2版[M]. 武汉: 华中科技大学出版社, 2020: 137-139.

4.孙岑岑, 方瑜, 董伟仁, 等. 鲁米诺化学发光的过氧化氢酶活性测定系统[J]. 实验室研究与探索, 2023, 42(8): 1-4, 19. [Sun CC, Fang Y, Dong WR, et al. Luminol chemiluminescence catalase activity determination system[J]. Research and Exploration in Laboratory, 2023, 42(8): 1-4, 19.] DOI: 10.19927/j.cnki.syyt.2023.08.001.

5.李花, 白莹, 张爱菊, 等. H2O2-OPD-Fe2+体系催化荧光光度法测定过氧化氢酶活性[J]. 化学研究与应用, 2022, 34(11): 2740-2744. [Li H, Bai Y, Zhang AJ, et al. Determination of catalase activity by cataytic spectrophotofluorimetry based on H2O2-OPD-Fe2+ system[J]. Chemical Research and Application, 2022, 34(11): 2740-2744.] DOI: 10.3969/j.issn.1004-1656.2022.11.019.

6.张俊杰, 蔡长春, 曹景林, 等. 紫外分光光度法测定烟苗过氧化氢酶活性[J]. 亚热带资源与环境学报, 2023, 18(4): 27-33. [Zhang JJ, Cai CC, Cao JL, et al. Determining the catalase activity in Tobacco seedlings by ultraviolet spectrophotometry[J]. Journal of Subtropical Resources and Environment, 2023, 18(4): 27-33.] DOI: 10.19687/j.cnki.1673-7105.2023.04.004.

7.王群, 刘朝巍, 徐文娟. 紫外分光光度法测定玉米过氧化氢酶活性新进展[J]. 中国农学通报, 2016, 32(15): 159-165. [Wang Q, Liu ZW, Xu WJ. Ultraviolet spectrophotometry measurement of catalase activity in maize[J]. Chinese Agricultural Science Bulletin, 2016, 32(15): 159-165.] DOI: CNKI:SUN:ZNTB.0.2016-15-029.

8.Farman AA, Hadwan MH. Simple kinetic method for assessing catalase activity in biological samples[J]. MethodsX, 2021, 8: 101434. DOI: 10.1016/j.mex.2021.101434.

9.董娜, 张爱菊, 白莹, 等. 二苯胺磺酸钠催化动力光度法测定过氧化氢酶活性[J]. 中国食品添加剂, 2018, (10): 179-183. [Dong N, Zhang AJ, Bai Y, et al. Measurement of catalase activity by sodium diphenylamine sulfonate catalytic-kinetic photometry[J]. China Food Additives, 2018, (10): 179-183.] DOI: 10.3969/j.issn.1006-2513.2018.10.020.

10.董娜, 张爱菊, 张小林. Fe2+-催化邻苯二胺显色光度法测定血清过氧化氢酶活性[J]. 分析试验室, 2020, 39(12): 1435-1438. [Dong N, Zhang AJ, Zhang XL. Spectrophotometric determination of catalase activity in serum with Fe2+-catalyzed o-phenylenediamine[J]. Chinese Journal of Analysis Laboratory, 2020, 39(12): 1435-1438.] DOI: 10.13595/j.cnki.issn1000-0720.2020.041901.

11.董娜, 赵红强, 张作瑞, 等. 四甲基联苯胺显色测定过氧化氢酶活性[J]. 化学研究与应用, 2021, 33(4): 720-725. [Dong  N, Zhao HQ, Zhang ZR, et al. Determination of catalase activity by tetramethylbenzidine spectrophotometric method[J]. Chemical Research and Application, 2021, 33(4): 720-725.] https://d.wanfangdata.com.cn/periodical/hxyjyyy202104019.

12.Correction to: an improved method for measuring catalase activity in biological samples[J]. Biol Methods Protoc, 2024, 9(1): bpae025. DOI: 10.1093/biomethods/bpae025.

13.刘砚韬, 王振伟, 张伶俐. 过氧化氢酶活性测定的新方法 [J]. 华西药学杂志, 2013, 28(4): 403-405. [Liu YT, Wang ZW, Zhang LL. A novel method for the assaying catalase activity[J]. West China Journal of Pharmaceutical Scienc, 2013, 28(4): 403-405.] DOI: 10.13375/j.cnki.wcjps.2013.04.032.

14.张红, 于亚辉, 张秀艳, 等. 硫氰酸钾和1,10-二氮杂菲分光光度法测定高纯氧氯化锆中痕量铁[J]. 冶金分析, 2023, 43(12): 73-77. [Zhang H, Yu YH, Zhang XY, et al. Determination of trace iron in high purity zirconium oxychloride by potassium thiocyanate and 1,10-phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2023, 43(12): 73-77.] DOI: 10.13228/j.boyuan.issn1000-7571.012158.

15.曾远娴, 王轩, 黄慧玲, 等. 硫氰酸钾分光光度法快速测定多维铁口服液的铁含量[J]. 食品安全质量检测学报, 2018, 9(16): 4363-4368. [Zeng YX, Wang X, Huang HL, et al. Rapid determination of iron content in multidimensional iron oral solution by potassium thiocyanate spectrophotometry[J]. Journal of Food Safety & Quality, 2018, 9(16): 4363-4368.] DOI: 10.3969/j.issn.2095-0381.2018.16.028.

16.李翠英. 硫氰酸盐分光光度法测定铁强化营养盐中铁的试验方法研究[J]. 中国井矿盐, 2010, 41(1): 33-35. [Li CY. Research on testing method of the determination of the iron in iron-fortified salt by spectrophotometry with thiocyanate salt[J]. China Well and Rock Salt, 2010, 41(1): 33-35.] DOI: 10.3969/j.issn.1001-0335.2010.01.011.

17.尚尔坤, 田然, 马丽媛, 等. 4种分光光度法测定铁含量的对比分析[J]. 食品工业, 2013, 34(10): 223-225. [Shang EK, Tian  R, Ma LY, et al. Comparative analysis of four spectrophotometric methods for determining iron content[J]. The Food Industry, 2013, 34(10): 223-225.] DOI: CNKI:SUN: SPGY.0.2013-10-076.

18.张金, 郭亚萍. KSCN分光光度法测定Fe3+条件研究[J]. 广东化工, 2017, 44(11): 274-275. [Zhang J, Guo YP. Study on the determination of Fe3+ by potassium thiocyanate spectrophotometry[J]. Guangdong Chemical Industry, 2017, 44(11): 274-275.] DOI: 10.3969/j.issn.1007-1865.2017.11.130.

Popular papers
Last 6 months