Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 30,2026 No.1 Detail

Exploration of the molecular mechanism of Guizhi Tang’s regulation on liver lipid metabolism based on multi-omics analysis

Published on Jan. 31, 2026Total Views: 131 times Total Downloads: 33 times Download Mobile

Author: SONG Haijin 1 SONG Qi 2 DOU Baokai 2 ZHANG Huanhuan 1 HUO Hairu 2 SUI Feng 2

Affiliation: 1. School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China 2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

Keywords: Guizhi Tang Transcriptomics Lipidomics Lipid metabolism Pungent-warm medicinal property Molecular mechanism Liver Protein-protein interaction

DOI: 10.12173/j.issn.2097-4922.202511020

Reference: SONG Haijin, SONG Qi, DOU Baokai, ZHANG Huanhuan, HUO Hairu, SUI Feng. Exploration of the molecular mechanism of Guizhi Tang’s regulation on liver lipid metabolism based on multi-omics analysis[J]. Yaoxue QianYan Zazhi, 2026, 30(1): 30-41. DOI: 10.12173/j.issn.2097-4922.202511020.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the molecular mechanism by which Guizhi Tang regulates liver lipid metabolism to characterize its pungent-warm effect, as well as provide new data support for the essence of the nature and efficacy of Guizhi Tang, and also lay an experimental foundation for its clinical rational and effective prevention and treatment of related diseases.

Methods  In the pharmacological study, 20 SPF mice were randomly divided into a control group and a Guizhi Tang group [9.84 g/(kg·d)], with 10 mice in each group. After 4 consecutive days of administration, the cold-heat tendency of mice was analyzed through behavioral experiments to evaluate the intervention effect of Guizhi Tang on the body's energy metabolism status and body temperature regulation. In a multi omics study, 6 SPF mice were randomly divided into a control group and a Guizhi Tang group, with 3 mice in each group. After administration,  UPLC-MS/MS technology was used to comprehensively detect lipid metabolites in mouse livers, screen differential metabolites, and identify metabolism-related pathways. Meanwhile, RNA was extracted from mouse liver tissues for transcriptome sequencing and library construction, followed by screening of differentially expressed genes and enrichment analysis. The STRING platform was used to construct a protein-protein interaction network to identify core targets and pathways. Combined analysis of transcriptome and lipidome data was performed to construct an interaction effect network, and clarify the key pathways and related targets involved in the regulation of lipid metabolism by Guizhi Tang.

Results The behavioral testing results showed that, from the first day to the fourth day after administration, mice in the Guizhi Tang group showed a significant tendency to move toward the low-temperature area (P<0.05). A total of 45 differential lipid metabolites were detected by lipidomics, and the core metabolites included triglycerides, phosphatidylcholines, diglycerides, the pathways included sphingolipid metabolism, glycerolipid metabolism, linoleic acid metabolism, ether lipid metabolism. Transcriptomics screening identified 62 significantly up-regulated genes and 52 down-regulated genes (P<0.05). Multi-omics combined analysis revealed that key genes such as Fmo3, CYP2g1, CYP2a22, Srebf1, Gal3st1, and Slc22a27 regulated 28 differential lipid metabolites.

Conclusion  Guizhi Tang can promote lipid metabolism by regulating specific genes and pathways (e.g., glycerophospholipid metabolism, linoleic acid metabolism), thereby enhancing the body's heat production capacity and heat output. This characterizes the overall "pungent-warm" medicinal property of Guizhi Tang and its main effects of inducing sweating to relieve exterior symptoms, warming the meridians, and activating yang. The results of this study not only provide new data support for the essence of the nature and efficacy of Guizhi Tang but also lay an experimental foundation for its prevention and treatment of energy metabolism-related diseases and inflammation-related diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.齐云, 霍海如, 田甲丽, 等. 桂枝汤对发热及低体温大鼠下丘脑中腺苷酸环化酶和磷酸二酯酶活性的影响[J]. 中国中西医结合杂志, 2001, 21(3): 203-205. [Qi Y, Huo HR, Tian JL, et al. Effect of Guizhi decoction on adenyl cyclase and phosphodiesterase in hypothalamus of rats models of fever and hypothermia[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2001, 21(3): 203-205.] DOI: 10.3321/j.issn:1003-5370.2001.03.014.

2.李沧海, 周军, 霍海如, 等. 桂枝汤对发热及低体温大鼠下丘脑可溶性一氧化氮合酶的影响[J]. 中国实验方剂学杂志, 2003, 9(2): 46-49. [Li CH, Zhou J, Huo HR, et al. Effect of Guizhi Tang on hypothalamic cytosolic NOS in fever rats and in hypothermia rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2003, 9(2): 46-49.] DOI: 10.3969/j.issn.1005-9903.2003.02.020.

3.赵保胜, 霍海如, 李兰芳, 等. 桂枝汤对小鼠巨噬细胞株分泌炎症因子的影响[J]. 中国实验方剂学杂志, 2006, 12(10): 23-25. [Zhao BS, Huo HR, Li LF, et al. The effect of Guizhi Tang on the secretion of inflammatory factors in RAW264.7 cells[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2006, 12(10): 23-25.] DOI: 10.3969/j.issn.1005-9903.2006.10.011.

4.周军, 方素萍, 齐云, 等. 桂枝汤对大鼠佐剂性关节炎的防治作用研究[J]. 中药药理与临床, 2000, 16(6): 1-3. [Zhou  J, Fang SP, Qi Y, et al. Effect of Guizhi decoction in preventing and curing adjuvant arthritis in rats[J]. Pharmacology and Clinics of Chinese Materia Medica, 2000, 16(6): 1-3.] DOI: 10.3969/j.issn.1001-859X.2000.06.001.

5.谭余庆, 霍海如, 李晓芹, 等. 桂枝汤对胃肠运动双向调节作用的研究Ⅰ.对胃排空、肠推进的影响[J]. 中药药理与临床, 1997, 13(6): 2-5. [Tan YQ, Huo HR, Li XQ, et al. Effects of Guizhi decoction on bidirectional regulation of gastrointestinal motility. Impacts on gastric emptying and intestinal propulsion[J]. Pharmacology and Clinics of Chinese Materia Medica, 1997, 13(6): 2-5.] https://d.wanfangdata.com.cn/periodical/CiBQZXJpb2RpY2FsQ0hJU29scjkyMDI2MDExMjE3MDQyNhIOUUsxOTk3MDA3NTcyMDgaCDJrbzcyZjk3.

6.郭建友, 杨元宵, 赵保胜, 等. 邻甲氧基桂皮醛对IL-1刺激脑微血管内皮细胞COX活性及PGE2释放的影响[J]. 中国中药杂志, 2006, 31(13): 1087-1090. [Guo JY, Yang  YX, Zhao BS, et al. Effect of 2-methoxycinnamaldehyde on activity of COX and PGE2 release in cerebral microvascular endothelial cells stimulated by IL-1[J]. China Journal of Chinese Materia Medica, 2006, 31(13): 1087-1090.] DOI: 10.3321/j.issn:1001-5302.2006.13.016.

7.Guo JY, Huo HR, Yang YX, et al. 2-methoxycinnamaldehyde reduces IL-1beta-induced prostaglandin production in rat cerebral endothelial cells[J]. Biol Pharm Bull, 2006, 29(11): 2214-2221. DOI: 10.1248/bpb.29.2214.

8.Guo JY, Huo HR, Zhao BS, et al. Effect of 3-phenyl-2-propene-1-ol on PGE2 release from rat cerebral microvascular endothelial cells stimulated by IL-1beta[J]. Am J Chin Med, 2006, 34(4): 685-693. DOI: 10.1142/S0192415X0600420X.

9.郭建友, 霍海如, 刘洪斌, 等. 桂皮醛对IL-1刺激下脑微血管内皮细胞COX-1、COX-2活性及释放PGE2的影响[J]. 中药药理与临床, 2005, 21(6): 16-18. [Guo JY, Huo HR, Liu HB, et al. Effect of cinnamic aldehyde on COX-1, COX-2 and PGE2 in cerebral microvascular endothelial cells induced by IL-1[J]. Pharmacology and Clinics of Chinese Materia Medica, 2005, 21(6): 16-18.] DOI: 10.3969/j.issn.1001-859X.2005.06.008.

10.Chen JM, Cai JW, Wei MY, et al. Effects of Guizhi decoction for diabetic cardiac autonomic neuropathy: a protocol for a systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(39): e22317. DOI: 10.1097/MD.0000000000022317.

11.中国药典2025年版. 一部[S]. 2025: 80, 180, 196, 204, 468.

12.李梅珍, 唐樑, 黄玉宇, 等. 多指标正交实验优选桂枝汤最佳煎煮工艺[J]. 中华中医药学刊, 2014, 32(6): 1451-1453. [Li  MZ, Tang L, Huang YY, et al. Orthogonal design for optimizing decoction process of Guizhi decoction with multi-targets[J]. Chinese Archives of Traditional Chinese Medicine, 2014, 32(6): 1451-1453.] DOI: 10.13193/j.issn.1673-7717.2014.06.067.

13.富杭育, 郭淑英, 高英杰, 等. 桂枝汤对体温双向调节作用的机理探讨─对下丘脑乙酰胆碱和去甲肾上腺素作用的影响[J]. 中国实验方剂学杂志, 1996, 2(2): 8-10. [Fu HY, Guo SJ, Gao YJ, et al. The mechanism of dual-directional thermoregulation by Guizhi Tang-effect on the action of acetylcholine and norepinephrine in hypothalamus[J]. Chinese Journal of Experimental Traditional Medical Formulae, 1996, 2(2): 8-10.] DOI: 10.13422/j.cnki.syfjx.1996.02.003.  

14.王春茜, 高旅, 吴茵, 等. 基于内源性代谢产物解析桂枝汤解热作用的分子机制[J]. 中华中医药杂志, 2021, 36(9): 5169-5175. [Wang CQ, Gao L, Wu Y, et al. Analysis of molecular mechanism of Guizhi decoction based on endogenous metabolites[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(9): 5169-5175.]https://d.wanfangdata.com.cn/periodical/CiBQZXJpb2RpY2FsQ0hJU29scjkyMDI2MDExMjE3MDQyNhIPemd5eXhiMjAyMTA5MDExGgg5cGp3a2FzMw%3D%3D.

15.Singh H, Kumar R, Mazumder A, et al. Insights into interactions of human cytochrome P450 17A1: a review[J]. Curr Drug Metab, 2022, 23(3): 172-187. DOI: 10.2174/1389200223666220401093833.

16.White IN, De Matteis F. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons[J]. Toxicol Lett, 2001, 124(1-3): 121-128. DOI: 10.1016/s0378-4274(00)00288-5.

17.Veit JGS, De Glas V, Balau B, et al. Characterization of CYP26B1-selective inhibitor, DX314, as a potential therapeutic for keratinization disorders[J]. J Invest Dermatol, 2020, 141(1): 72-83. DOI: 10.1016/j.jid.2020.05.090.

18.Kwong E, Li Y, Hylemon PB, et al. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism[J]. Acta Pharm Sin B, 2015, 5(2): 151-157. DOI: 10.1016/j.apsb.2014.12.009.

19.Uehara S, Murayama N, Higuchi Y, et al. Comparison of mouse and human cytochrome P450 mediated-drug metabolizing activities in hepatic and extrahepatic microsomes[J]. Xenobiotica, 2022, 52(3): 21-28. DOI: 10.1080/00498254.2022.2066581.

20.Lehmler HJ, Uwimana E, Dean LE, et al. Probing the role of CYP2 enzymes in the atropselective metabolism of polychlorinated biphenyls using liver microsomes from transgenic mouse models[J]. Chem Res Toxicol, 2022, 35(12): 2310-2323. DOI: 10.1021/acs.chemrestox.2c00276.

21.Abuobeid R, Herrera-Marcos L, Navarro MA, et al. Dietary erythrodiol modifies hepatic transcriptome in mice in a sex and dose-dependent way[J]. Int J Mol Sci, 2020, 21(19): 7331. DOI: 10.3390/ijms21197331.

22.Chim SM, Howell K, Dronzek J, et al. Genetic inactivation of zinc transporter SLC39A5 improves liver function and hyperglycemia in obesogenic settings[J]. ELife, 2024, 12: RP90419. DOI: 10.7554/eLife.90419.

23.Zhang XD, Xie XT, Heckmann BL, et al. Targeted disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and alleviates high-fat diet-induced liver steatosis[J]. Diabetes, 2014, 63(3): 934-946. DOI: 10.2337/db13-1422.

24.Chen L, Elizalde M, Alvarez-Sola G. The role of sulfatides in liver health and disease[J]. Front Biosci (Landmark Ed), 2025, 30(1): 25077. DOI: 10.31083/FBL25077.

25.Moore MP, Wang XB, Shi HX, et al. Circulating indian hedgehog is a marker of the hepatocyte-TAZ pathway in experimental NASH and is elevated in humans with NASH[J]. JHEP Rep, 2023, 5(5): 100716. DOI: 10.1016/j.jhepr.2023.100716.

26.Ren QN, Sun QM, Fu JF. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease[J]. Autophagy, 2024, 20(2): 221-241. DOI: 10.1080/15548627.2023.2254191.

27.Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP, and Hedgehog in liver cancer[J]. Front Oncol, 2019, 9(708): 1-7. DOI: 10.3389/fonc.2019.00708.

28.Zhao YL, Tran M, Wang L, et al. PDK4-deficiency reprograms intrahepatic glucose and lipid metabolism to facilitate liver regeneration in mice[J]. Hepatol Commun, 2020, 4(4): 504-517. DOI: 10.1002/hep4.1484.

29.Zhang ZX, Guo JW, Zhu JC. HSPB1 alleviates acute-on-chronic liver failure via the P53/Bax pathway[J]. Open Life Sci, 2024, 19(1): 20220919. DOI: 10.1515/biol-2022-0919.

30.Amemiya-Kudo M, Shimano H, Hasty AH, et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes[J]. J Lipid Res, 2002, 43(8): 1220-1235. https://pubmed.ncbi.nlm.nih.gov/12177166/.

31.Honke K, Tsuda M, Hirahara Y, et al. Molecular cloning and expression of cDNA encoding human 3'-phosphoadenylylsulfate:galactosylceramide 3'-sulfotransferase[J]. Biol Chem, 1997, 272(8): 4864-4868. DOI: 10.1074/jbc.272.8.4864.

32.Lin HL, Zhou ZX, Zhao J, et al. Genome-wide association study identifies genomic loci of sex determination and gonadosomatic index traits in large yellow croaker (larimichthys crocea)[J]. Mar Biotechnol (NY), 2021, 23(1): 127-139. DOI: 10.1007/s10126-020-10007-2.

33.Tang ZL, Sun C, Yan Y, et al. Aberrant elevation of FTO levels promotes liver steatosis by decreasing the m6A methylation and increasing the stability of SREBF1 and ChREBP mRNAs[J]. J Mol Cell Biol, 2022, 14(9): 1-14. DOI: 10.1093/jmcb/mjac061.

Popular papers
Last 6 months