Objective To detect risk signals of adverse events (AEs) associated with cetuximab and provide references for rational clinical use.
Methods Adverse event reports related to cetuximab from the FAERS database were retrieved, covering the period from Q1 2004 to Q2 2025. The reports were classified according to the Medical Dictionary for Regulatory Activities (MedDRA) system organ classification (SOC) and preferred terms (PT). Four signal detection methods were employed for analysis: reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network (BCPNN), and empirical Bayesian geometric mean. Subgroup analyses were conducted based on gender and age, and the Weibull distribution model was used to assess the time-risk patterns.
Results A total of 12,007 cases related to cetuximab were identified, comprising 33,797 adverse events (AEs) and resulting in 320 significant signals. Common adverse events included rash, neutropenia, and dehydration. New potential signals were also discovered, including hyperkalemia, disseminated intravascular coagulation, acute respiratory distress syndrome, dysphagia, and intestinal obstruction. Subgroup analyses indicated that males were more prone to hypotension, mucosal inflammation, allergic reactions, and interstitial pneumonia, while females primarily experienced rash and hypokalemia. The age group of 18-﹤60 years was associated with adverse reactions such as bone marrow suppression, malignant tumor progression, rash, and deep vein thrombosis. Elderly patients (≥60 years) should be cautious of rapidly occurring severe allergic reactions, interstitial lung disease, anaphylactic shock, and acute respiratory distress syndrome. The median time-to-onset of AEs occurrence was 15 days (interquartile range 10-20 days), indicating an early failure pattern.
Conclusion By analyzing real-world AEs data associated with cetuximab, potential risk signals for AEs were identified, which can help standardize rational clinical use and provide data support for clinical risk management.
1.Luo FR, Yang Z, Dong H, et al. Prediction of active drug plasma concentrations achieved in cancer patients by pharmacodynamic biomarkers identified from the geo human colon carcinoma xenograft model[J]. Clin Cancer Res, 2005, 11(15): 5558-5565. DOI: 10.1158/1078-0432.CCR-05-0368.
2.Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the EGF receptor[J]. Annu Rev Biochem, 2015, 84(1): 739-764. DOI: 10.1146/annurev-biochem-060614-034402.
3.Chen J, Zeng F, Forrester SJ, et al. Expression and function of the epidermal growth factor receptor in physiology and disease[J]. Physiol Rev, 2016, 96(3): 1025-1069. DOI: 10.1152/physrev.00030.2015.
4.High PC, Liang Z, Guernsey-Biddle C, et al. Cetuximab increases LGR5 expression and augments LGR5-targeting antibody-drug conjugate efficacy in patient-derived colorectal cancer models[J]. Cell Rep Med, 2025, 6(10): 102363. DOI: 10.1016/j.xcrm.2025.102363.
5.Xue J, Ma Y, Zhao Y, et al. Izalontamab (SI-B001), a novel EGFRxHER3 bispecific antibody in patients with locally advanced or metastatic epithelial tumor: results from first-in-human phase I/ib study[J]. Clin Cancer Res, 2025, 31(21): 4438-4445. DOI: 10.1158/1078-0432.CCR-25-0206.
6.Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 22. DOI: 10.1038/s41392-020-0116-z.
7.Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer[J]. N Engl J Med, 2007, 357(20): 2040-2048. DOI: 10.1056/NEJMoa071834.
8.Bossi P, Alberti A, Bergamini C, et al. Immunotherapy followed by cetuximab in locally advanced/metastatic cutaneous squamous cell carcinomas: the I-TACKLE trial[J]. Eur J Cancer, 2025, 220(7): 115379. DOI: 10.1016/j.ejca.2025.115379.
9.Kopetz S, Yoshino T, Van Cutsem E, et al. Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: a randomized phase 3 trial[J]. Nat Med, 2025, 31(3): 901-908. DOI: 10.1038/s41591-024-03443-3.
10.Liu WH, Hu HM, Li C, et al. Real-world study of adverse events associated with triptan use in migraine treatment based on the U.S. food and drug administration (FDA) adverse event reporting system (FAERS) database[J]. J Headache Pain, 2024, 25(1): 206. DOI: 10.1186/s10194-024-01913-0.
11.郑靖萍, 张震坡, 马麟, 等. 麦考酚钠合并用药的不良事件风险: 基于FAERS数据库分析[J]. 药学前沿, 2025, 29(10): 1724-1730. [Zheng JP, Zhang ZP, Ma L, et al. Mycophenolate sodium in combination therapy: a signal detection analysis using the FAERS database[J]. Frontiers in Pharmaceutical Sciences, 2025, 29(10): 1724-1730.] DOI: 10.12173/j.issn.2097-4922.202501005.
12.Wen MT, Li JC, Lu BW, et al. Indications and adverse events of teriparatide: based on FDA adverse event reporting system (FAERS)[J]. Front Pharmacol, 2024, 15(1): 1391356. DOI: 10.3389/fphar.2024.1391356.
13.Noguchi Y, Tachi T, Teramachi H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source[J]. Brief Bioinform, 2021, 22(6): bbab347. DOI: 10.1093/bib/bbab347.
14.Xu M, Xu SG, Yi XL. A comparative analysis of drug-induced kidney injury adverse reactions between cyclosporine and tacrolimus based on the FAERS database[J]. BMC Immunol, 2025, 26(1): 35. DOI: 10.1186/s12865-025-00714-7.
15.Cheng Y, Zhang MJ, Yao Y, et al. A real-world drug safety surveillance study from the FAERS database of hepatocellular carcinoma patients receiving durvalumab in combination with tremelimumab[J]. Front Immunol, 2025, 16(1): 1657398. DOI: 10.3389/fimmu.2025.1657398.
16.Zhang XS, Ren XL, Zhu TY, et al. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for sunitinib[J]. Front Pharmacol, 2024, 15(1): 1407709. DOI: 10.3389/fphar.2024.1407709.
17.Li Z, Guo CY, Liu XF, et al. Post-marketing safety evaluation of lurbinectedin: a pharmacovigilance analysis based on the FAERS database[J]. Front Pharmacol, 2024, 15(1): 1368763. DOI: 10.3389/fphar.2024.1368763.
18.Wang HF, Xu C, Xie WM, et al. Real-world pharmacovigilance and clinical risks of fluvoxamine: a disproportionality analysis based on FAERS data[J]. J Affect Disord, 2026, 395: 120713. DOI: 10.1016/j.jad.2025.120713.
19.Liu D, Mao W, Hu B, et al. A real-world pharmacovigilance study of polatuzumab vedotin based on the FDA adverse event reporting system (FAERS)[J]. Front Pharmacol, 2024, 15(1): 1405023. DOI: 10.3389/fphar.2024.1405023.
20.Chung CH, Li J, Steuer CE, et al. Phase II multi-institutional clinical trial result of concurrent cetuximab and nivolumab in recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2022, 28(11): 2329-2338. DOI: 10.1158/1078-0432.CCR-21-3849.
21.Bonomo P, Loi M, Desideri I, et al. Incidence of skin toxicity in squamous cell carcinoma of the head and neck treated with radiotherapy and cetuximab: a systematic review[J]. Crit Rev Oncol Hematol, 2017, 120(12): 98-110. DOI: 10.1016/j.critrevonc.2017.10.011.
22.Rutkowski D, Scholey R, Davies J, et al. Epidermal growth factor receptor/mitogen-activated kinase inhibitor treatment induces a distinct inflammatory hair follicle response that includes collapse of immune privilege[J]. Br J Dermatol, 2024, 191(5): 791-804. DOI: 10.1093/bjd/ljae243.
23.Segaert S, Van Cutsem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors[J]. Ann Oncol, 2005, 16(9): 1425-1433. DOI: 10.1093/annonc/mdi279.
24.Satoh T, Gemma A, Kudoh S, et al. Incidence and clinical features of drug-induced lung injury in patients with advanced colorectal cancer receiving cetuximab: results of a prospective multicenter registry[J]. Jpn J Clin Oncol, 2014, 44(11): 1032-1039. DOI: 10.1093/jjco/hyu128.
25.Matsuo M, Yasumatsu R, Masuda M, et al. Drug-induced interstitial lung disease in recurrent and/or metastatic head and neck cancer patients treated with cetuximab and/or nivolumab[J]. Oral Oncol, 2021, 113(2): 105129. DOI: 10.1016/j.oraloncology.2020.105129.
26.Aranda E, García-Alfonso P, Benavides M, et al. First-line mFOLFOX plus cetuximab followed by mFOLFOX plus cetuximab or single-agent cetuximab asc maintenance therapy in patients with metastatic colorectal cancer: Phase II randomised MACRO2 TTD study[J]. Eur J Cancer, 2018, 101(14): 263-272. DOI: 10.1016/j.ejca.2018.06.024.
27.Funakoshi T, Suzuki M, Tamura K. Infectious complications in cancer patients treated with anti-EGFR monoclonal antibodies cetuximab and panitumumab: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2014, 40(10): 1221-1229. DOI: 10.1016/j.ctrv.2014.09.002.
28.Guigay J, Aupérin A, Fayette J, et al. Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as first-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial[J]. Lancet Oncol, 2021, 22(4): 463-475. DOI: 10.1016/S1470-2045(20)30755-5.
29.Neyns B, Sadones J, Joosens E, et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma[J]. Ann Oncol, 2009, 20(9): 1596-1603. DOI: 10.1093/annonc/mdp032.
30.Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: epidemiology, biomarkers, and management[J]. Br J Haematol, 2021, 192(5): 803-818. DOI: 10.1111/bjh.17172.
31.Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 394(10212): 1915-1928. DOI: 10.1016/S0140-6736(19)32591-7.
32.Cao SR, Pan Y, Terker AS, et al. Epidermal growth factor receptor activation is essential for kidney fibrosis development[J]. Nat Commun, 2023, 14(1): 7357. DOI: 10.1038/s41467-023-43226-x.
33.Ji PF, Chen TT, Li C, et al. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers[J]. Crit Rev Oncol Hematol, 2025, 206(2): 104586. DOI: 10.1016/j.critrevonc.2024.104586.
34.Ang KK, Zhang Q, Rosenthal DI, et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522[J]. J Clin Oncol, 2014, 32(27): 2940-2950. DOI: 10.1200/JCO.2013.53.5633.
35.Lungulescu CV, Ungureanu BS, Turcu-Stiolica A, et al. The role of IgE specific for galactose-α-1,3-galactose in predicting cetuximab induced hypersensitivity reaction: a systematic review and a diagnostic meta-analysis[J]. Sci Rep, 2020, 10(1): 21355. DOI: 10.1038/s41598-020-78497-7.
36.Wang QL, Qi YX, Zhang D, et al. Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: a pooled analysis of 25 randomized clinical trials[J]. Tumour Biol, 2014, 36(5): 3471-3482. DOI: 10.1007/s13277-014-2983-9.
37.Howard SC, Avagyan A, Workeneh B, et al. Tumour lysis syndrome[J]. Nat Rev Dis Primers, 2024, 10(1): 58. DOI: 10.1038/s41572-024-00542-w.
38.Gong F, Zheng X, Zhao S, et al. Disseminated intravascular coagulation: cause, molecular mechanism, diagnosis, and therapy[J]. MedComm, 2025, 6(2): e70058. DOI: 10.1002/mco2.70058.
39.Wada H, Matsumoto T, Aota T, et al. Management of cancer-associated disseminated intravascular coagulation: guidance from the SSC of the ISTH: comment[J]. J Thromb Haemost, 2016, 14(6): 1314-1315. DOI: 10.1111/jth.13297.
40.Gibson MK, Catalano P, Kleinberg LR, et al. Phase II study of preoperative chemoradiotherapy with oxaliplatin, infusional 5-fluorouracil, and cetuximab followed by postoperative docetaxel and cetuximab in patients with adenocarcinoma of the esophagus: a trial of the ECOG-ACRIN cancer research group (E2205)[J]. Oncologist, 2020, 25(1): e53-e59. DOI: 10.1634/theoncologist.2018-0750.
41.Isono T, Hirayama S, Domon H, et al. Degradation of EGFR on lung epithelial cells by neutrophil elastase contributes to the aggravation of pneumococcal pneumonia[J]. J Biol Chem, 2023, 299(6): 104760. DOI: 10.1016/j.jbc.2023.104760.
42.Baraibar I, Ros J, Saoudi N, et al. Sex and gender perspectives in colorectal cancer[J]. ESMO Open, 2023, 8(2): 101204. DOI: 10.1016/j.esmoop.2023.101204.
43.Özdemir BC. Removing barriers to address sex differences in anticancer drug toxicity[J]. Nat Rev Cancer, 2024, 24(3): 161-162. DOI: 10.1038/s41568-023-00651-w.
44.Ngcobo NN. Influence of ageing on the pharmacodynamics and pharmacokinetics of chronically administered medicines in geriatric patients: a review[J]. Clin Pharmacokinet, 2025, 64(3): 335-367. DOI: 10.1007/s40262-024-01466-0.
45.Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of the cellular immune response after injury[J]. Cellular Immunol, 2008, 252(1-2): 57-67. DOI: 10.1016/j.cellimm.2007.09.007.
46.Alhumaidi RM, Bamagous GA, Alsanosi SM, et al. Risk of polypharmacy and its outcome in terms of drug interaction in an elderly population: a retrospective cross-sectional study[J]. J Clin Med, 2023, 12(12): 3960. DOI: 10.3390/jcm12123960.
47.Karnes JH, Miller MA, White KD, et al. Applications of immunopharmacogenomics: predicting, preventing, and understanding immune-mediated adverse drug reactions[J]. Annu Rev Pharmacol Toxicol, 2019, 59(1): 463-486. DOI: 10.1146/annurev-pharmtox-010818-021818.
48.刘艳, 刘玉芹. 关注老年人药物不良反应[J]. 吉林医药学院学报, 2019, 40(1): 51-54. [Liu Y, Liu YQ. Concerned about adverse drug reactions of the elderly[J]. Journal of Jilin Medical University, 2019, 40(1): 51-54.] DOI: 10.13845/j.cnki.issn1673-2995.2019.01.024.
49.Blayney DW, Schwartzberg L. Chemotherapy-induced neutropenia and emerging agents for prevention and treatment: a review[J]. Cancer Treat Rev, 2022, 109(8): 102427. DOI: 10.1016/j.ctrv.2022.102427.
50.Adams A, Scheckel B, Habsaoui A, et al. Intravenous iron versus oral iron versus no iron with or without erythropoiesis‐ stimulating agents (ESA) for cancer patients with anaemia: a systematic review and network meta-analysis[J]. Cochrane Database Syst Rev, 2022(6): CD012633. DOI: 10.1002/14651858.CD012633.pub2.