Objective This study aims to investigate the anti-respiratory syncytial virus (RSV) effect and predict the mechanism of Dandelion alcohol extract in vitro and in vivo experiments, predict the mechanism and carry out experimental verification.
Methods Firstly, through cytopathic effect (CPE) combined with MTT assay, the in vitro antiviral effect of Dandelion alcohol extract was investigated using selectivity index (SI) as the indicator. Using a mouse RSV infection model, the in vivo antiviral effect of Dandelion alcohol extract was investigated based on indicators such as body weight change rate, lung index, lung tissue section, and lung viral load. The mechanism of Dandelion alcohol extract was predicted by network pharmacology. RT-qPCR was used to verify the levels of EGFR, MAPK3, STAT3, and IL-6 relative mRNA, ELISA was used to verify the levels of related inflammatory factors (TNF-α), and Western Blot was used to verify the levels of NF-κB to validate the target and pathway results predicted by network pharmacology.
Results The results of in vitro experiments showed that IC50 was 0.005 mg/ mL and SI value of Dandelion alcohol extract were >200.2, and the anti-RSV effect became more obvious with the increase of mass concentration. The in vivo experimental results showed that Dandelion alcohol extract significantly reduced the weight loss of mice caused by RSV infection, decreased the viral load in the lungs, lowered the level of EGFR, MAPK3, STAT3, IL-6, NF-κB, and TNF-α, and improved the lung conditions. The network pharmacology results screened 57 chemical components of Dandelion and 1 507 RSV disease targets, and after taking the intersection, 55 common targets were obtained. Protein-protein interaction network analysis identified core targets such as EGFR, MAPK3, STAT3 and IL-6. GO function and KEGG pathway enrichment analysis obtained PD-1/PD-L1 and IL-17 and other signaling pathways. The result of RT-qPCR showed that Dandelion alcohol extract could reduce the level of EGFR, MAPK3, and STAT3. The ELISA results showed that the dandelion alcohol extract could reduce the TNF-α levels. The Western Blot results indicated that the dandelion alcohol extract could decrease the expression level of NF-κB protein.
Conclusion Dandelion alcohol extract has good anti-RSV effect in vitro and in vivo. Its mechanism may involve targeting EGFR, MAPK3, STAT3, IL-6, and other targets, and modulating signal pathways such as PD-1/PD-L1 and IL-17, in turn, influences the levels of inflammatory factors like NF-κB and TNF-α, contributing to its anti-RSV effects.
1.van Royen T, Rossey I, Sedeyn K, et al. How RSV proteins join forces to overcome the host innate immune response[J]. Viruses, 2022, 14(2): 419. DOI: 10.3390/v14020419.
2.张盈, 杨丽蓉, 王晨. 儿童呼吸道合胞病毒感染的临床特征分析[J]. 热带病与寄生虫学, 2024, 22(4): 248-251. [Zhang Y, Yang LR, Wang C. Clinical characterization of respiratory syncytial virus infection in children[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(4): 248-251.] DOI: 10.20199/j.issn.1672-2302.2024.04.012.
3.侯宪邦, 黄娱婕, 张子瑾. NSAIDs抗RSV作用机制的网络药理学分析[J]. 包头医学院学报, 2024, 40(10): 12-18. [Hou XB, Huang YJ, Zhang ZJ. Network pharmacological analysis of the anti-RSV mechanism of NSAIDs[J]. Journal of Baotou Medical College, 2024, 40(10): 12-18.] DOI: 10.16833/j.cnki.jbmc.2024.10.003.
4.徐翰, 黄蓉, 邓爱露, 等. 小柴胡颗粒对呼吸道合胞病毒感染小鼠免疫系统的影响[J]. 中国病原生物学杂志, 2024, 19(2): 144-148. [Xu H, Huang R, Deng AL, et. Effect of Xiaochaihu granules on the immune system of mice infected with respiratory syncytial virus[J]. Journal of Parasitic Biology, 2024, 19(2): 144-148.] DOI: 10.13350/j.cjpb.240204.
5.刘斯宇, 王富珍, FLeming-Dutra K, 等. 美国关于妊娠期间使用呼吸道合胞病毒疫苗预防婴儿呼吸道合胞病毒相关下呼吸道疾病的建议[J]. 中国疫苗和免疫, 2024, 30(3): 377-382. [Liu SY, Wang FZ, Fleming-Dutra K, et al. Use of the Pfizer respiratory syncytial virus vaccine during pregnancy for the prevention of respiratory syncytial virus-associated lower respiratory tract disease in infants: recommendations of the Advisory Committee on Immunization Practices-United States[J]. Chinese Journal of Vaccines and Immunization, 2024, 30(3): 377-382.] DOI: 10.19914/j.CJVI.2024061.
6.刘日慧, 刘晓凤, 伍晓乐, 等 . 中药抗病毒作用机制的研究进展[J]. 国外医药(抗生素分册), 2024, 45(4): 226-238. [Liu RH, Liu XF, Wu XL, et al. Research progress on antiviral mechanism of effects of traditional Chinese medicine preparations against viral diseases[J]. World Notes on Antibiotics, 2024, 45(4): 226-238.] DOI: 10.3969/j.issn.1001-8751.2024.04.002.
7.魏清筠, 陈姣, 周谦, 等. 中药抗呼吸道病毒感染性疾病的研究述评[J]. 南京中医药大学学报, 2024, 40(10): 1141-1148. [Wei QJ, Chen J, Zhou Q, et al. Review on chinese medicine against respiratory viral infectious disease research[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2024, 40(10): 1141-1148.] DOI: 10.14148/j.issn.1672-0482.2024.1141.
8.中国药典2020年版. 一部[S]. 2020: 367.
9.石爱文, 姚佳靖, 王庆, 等. 蒲公英化学成分和药理作用研究进展及其质量标志物预测分析[J]. 中华中医药学刊, 2024, 42(9): 38-45, 259. [Shi AW, Yao JJ, Wang Q, et al. Research progress of chemical composition and pharmacological effects of Pugongying (Taraxaci herba) and its quality marker prediction analysis[J]. Chinese Archives of Traditional Chinese Medicine, 2024, 42(9): 38-45, 259.] DOI: 10.13193/j.issn.1673-7717.2024.09.008.
10.张怡情, 黄清霞, 冯旭, 等. 蒲公英化学成分、药理作用及质量标志物预测分析[J]. 辽宁中医药大学学报, 2025, 27(2): 59-67. [Zhang YQ, Huang QX, Feng X, et al. Chemical components and pharmacological actions of Pugongying (Taraxacilterba)and predictive analysis on Q-markers[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2025, 27(2): 59-67.] DOI: 10.13194/j.issn.1673-842X.2025.02.011.
11.刘亦菲, 刘兆薇, 任一冉, 等. 蒲公英化学成分、药理作用研究进展及质量标志物预测分析[J]. 中华中医药学刊, 2024, 42(8): 132-141. [Liu YF, Liu ZW, Ren YR, et al. Research progress in chemical composition and pharmacological effects of Pugongying (Taraxacum officinale) and predictive analysis of quality markers[J]. Chinese Archives of Traditional Chinese Medicine, 2024, 42(8): 132-141.] DOI: 10.13193/j.issn.1673-7717.2024.08.028.
12.岳路路, 高敏, 张秋红, 等. 复方黄柏液体外抗病毒试验初步研究[J]. 辽宁中医药大学学报, 2016, 18(11): 20-22. [Yue LL, Gao M, Zhang QH, et al. Preliminary study on antiviral effect in vitro of compound Huangbai fluid[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2016, 18(11): 20-22.] DOI: 10.13194/j.issn.1673-842x.2016.11.006.
13.李忠原, 李保宏, 刘苗苗, 等. 甘草对5种病毒的抑制作用及抗RSV活性部位的筛选[J]. 中成药, 2022, 44(8): 2503-2509. [Li ZY, Li BH, Liu MM, et al. Effects of Glycyrrhiza uralensis on inhibiting five viruses and screening of its active anti-RSV fraction[J]. Chinese Traditional Patent Medicine, 2022, 44(8): 2503-2509.] DOI: 10.3969/j.issn.1001-1528.2022.08.013.
14.李忠原. 甘草总皂苷颗粒的制备工艺及抗病毒作用研究 [D]. 济南: 山东中医药大学, 2022. DOI: 10.27282/d.cnki.gsdzu.2022.000958.
15.洪博, 刘荣宏, 侯玉娇, 等. 蒲公英药材UPLC指纹图谱及10个成分含量测定研究[J]. 药物分析杂志, 2023, 43(11): 1858-1865. [Hong B, Liu RH, Hou YJ, et al. Study on UPLC fingerprint of Taraxaci herba and determination of ten components[J]. Chinese Journal of Pharmaceutical Analysis, 2023, 43(11): 1858-1865.] DOI: 10.16155/j.0254-1793.2023.11.07.
16.许义方, 许文昌. 基于网络药理学和分子对接技术探讨阳和汤治疗类风湿性关节炎的作用机制[J]. 中医临床研究, 2025, 17(4): 95-104. [Xu YF, Xu WC. Exploration on mechanism of the Yanghe decoction in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking technology[J]. Clinical Journal of Chinese Medicine, 2025, 17(4): 95-104.] DOI: 10.3969/j.issn.1674-7860.2025.04.017.
17.侯长周, 张建锋, 安海, 等. 栀子抗呼吸道合胞病毒作用及基于网络药理学和分子对接的机制研究[J].药物评价研究, 2024, 47(9): 1985-1994. [Hou CZ, Zhang JF, An H, et al. Anti-respiratory syncytial virus effect of Gardeniae fructus and investigation of mechanism based on network pharmacology and molecular docking[J]. Drug Evaluation Research, 2024, 47(9): 1985-1994.] DOI: 10.7501/j.issn.1674-6376.2024.09.005.
18.林锋, 刘伦旭. 辅助性T细胞17、白介素-17与肺癌关系的研究进展[J]. 中国胸心血管外科临床杂志, 2019, 26(1): 92-96. [Lin F, Liu LX. Research progress on the relationship between T helper cell 17, interleukin-17 and lung cancer[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2019, 26(1): 92-96.] DOI: 10.7507/1007-4848.201803038.
19.徐炎, 丁樱, 李东林, 等. 基于PD-1/PD-L1探讨麻杏石甘汤平衡肺部炎症与免疫微环境紊乱的机制研究[J]. 时珍国医国药, 2024, 35(11): 2518-2522. [Xu Y, Ding Y, Li DL, et al. The mechanism of Ma Xing Shi Gan Tang in balancing lung inflammation and immune microenvironment disorder basede on PD-1/PD-L1[J]. Journal of Lishizhen Traditional Chinese Medicine, 2024, 35(11): 2518-2522.] https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202411003.htm.
20.Farrag MA, Almajhdi FN. Human respiratory syncytial virus: role of innate immunity in clearance and disease progression[J]. Viral Immunol, 2016, 29(1): 11-26. DOI: 10.1089/vim.2015.0098.
21.Ueki IF, Min-Oo G, Kalinowski A, et al. Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium[J]. J Exp Med, 2013, 210(10): 1929-1936. DOI: 10.1084/jem.20121401.
22.Li S, Han X, Lu Z, et al. MAPK cascades and transcriptional factors: regulation of heavy metal tolerance in plants[J]. Int J Mol Sci, 2022, 23(8): 4463. DOI: 10.3390/ijms23084463.
23.Fan WL, Yang LY, Hsieh JC, et al. Prognostic genetic biomarkers based on oncogenic signaling pathways for outcome prediction in patients with oral cavity squamous cell carcinoma[J]. Cancers (Basel), 2021, 13(11): 2709. DOI: 10.3390/cancers13112709.
24.Jie XL, Luo ZR, Yu J, et al. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma[J]. J Ethnopharmacol, 2023, 317: 116719. DOI: 10.1016/j.jep.2023.116719.
25.范卫锋, 梁博伟, 梁周, 等. 基于网络药理学和分子对接技术探讨冬虫夏草治疗肺纤维化的作用机制[J]. 今日药学, 2024, 34(10): 770-778. [Fan WF, Liang BW, Liang Z, et al. Mechanism of Cordyceps Sinensis in treatment of pulmonary fibrosis based on network pharmacology and molecular docking technology[J]. Pharmacy Today, 2024, 34(10): 770-778.] DOI: 10.12048/j.issn.1674-229X.2024.10.006.
26.Wankowicz SAM, Werner L, Orsola A, et al. Differential expression of PD-L1 in high grade T1 vs muscle invasive bladder carcinoma and its prognostic implications[J]. J Urol, 2017, 198(4): 817-823. DOI: 10.1016/j.juro.2017.04.102.
27.Lucaciu LA, Ilieș M, Vesa ȘC, et al. Serum interleukin (IL)-23 and IL-17 profile in inflammatory bowel disease (IBD) patients could differentiate between severe and non-severe disease[J]. J Pers Med, 2021, 11(11): 1130. DOI: 10.3390/jpm11111130.
28.Berry SPD, Dossou C, Kashif A, et al. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases[J]. Int Immunopharmacol, 2022, 102: 108402. DOI: 10.1016/j.intimp.2021.108402.