Objective To evaluate the efficacy, safety, and cost-effectiveness of linezolid in the treatment of complicated lower respiratory tract infections (cLRTIs) using a rapid health technology assessment (HTA) approach, and to provide evidence to support clinical decision-making.
Methods A comprehensive search was conducted in major international and Chinese databases as well as HTA agency websites to identify relevant HTA reports, systematic reviews/Meta-analyss, and pharmacoeconomic studies. Literature screening, data extraction, and quality assessment were performed, followed by descriptive analysis.
Results A total of 23 studies were included, comprising 18 systematic reviews/Meta-analyses and 5 pharmacoeconomic evaluations. In terms of efficacy, linezolid demonstrated overall therapeutic effects comparable to glycopeptide antibiotics, with no significant differences in clinical cure or microbiological eradication rates, and no evident advantage in Methicillin-resistance Staphylococcus aureus (MRSA) infections. Although linezolid achieves higher concentrations in epithelial lining fluid, this pharmacokinetic advantage has not translated into definitive clinical benefits. Regarding safety, linezolid was associated with a higher incidence of adverse events, particularly thrombocytopenia and gastrointestinal reactions, while the risks of renal impairment and all-cause mortality did not differ significantly from glycopeptides. In terms of cost-effectiveness, results varied across countries. Some studies suggested that, despite its higher price, linezolid may offer economic advantages in selected populations due to its oral formulation and potential to reduce hospitalization duration.
Conclusion Linezolid shows comparable efficacy and acceptable safety to glycopeptides in cLRTIs. Its cost-effectiveness requires further evaluation in the context of China’s healthcare system.
1.Yin Y, Zhu P, Guo Y, et al. Enhancing lower respiratory tract infection diagnosis: implementation and clinical assessment of multiplex PCR-based and hybrid capture-based targeted next-generation sequencing[J]. EBioMedicine, 2024, 107: 105307. DOI: 10.1016/j.ebiom.2024.105307.
2.Mauritz MD, Hasan C, Schmidt P, et al. Lower respiratory tract infections in pediatric patients with severe neurological impairments: clinical observations and perspectives in a palliative care unit. children (Basel)[J]. 2022, 9(6): 852. DOI: 10.3390/children9060852.
3.Watson A, Wilkinson TMA. Respiratory viral infections in the elderly[J]. Ther Adv Respir Dis, 2021, 15: 1753466621995050. DOI: 10.1177/1753466621995050.
4.Hodille E, Delouere L, Bouveyron C, et al. In vitro activity of ceftobiprole on 440 Staphylococcus aureus strains isolated from bronchopulmonary infections[J]. Med Mal Infect, 2017, 47(2): 152-157. DOI: 10.1016/j.medmal.2016.10.004.
5.Shariff M, Ramengmawi E. Antimicrobial resistance pattern of anaerobic bacteria causing lower respiratory tract infections[J]. BMC Microbiol, 2023, 23(1): 301. DOI: 10.1186/s12866-023-03059-6.
6.Bounthavong M, Hsu DI. Cost-effectiveness of linezolid in methicillin-resistant Staphylococcus aureus skin and skin structure infections[J]. Expert Rev Pharmacoecon Outcomes Res, 2012, 12(6): 683-698. DOI: 10.1586/erp.12.72.
7.Sweeney S, Berry C, Kazounis E, et al. Cost-effectiveness of short, oral treatment regimens for rifampicin resistant tuberculosis[J]. PLOS Glob Public Health, 2022, 2(12): e0001337. DOI: 10.1371/journal.pgph.0001337.
8.Otto-Knapp R, Bauer T, Brinkmann F, et al. Treatment of MDR, Pre-XDR, XDR, and rifampicin-resistant tuberculosis or in case of intolerance to at least rifampicin in Austria, Germany, and Switzerland[J]. Respiration, 2024, 103(9): 593-600. DOI: 10.1159/000539410.
9.Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid regimens for drug-resistant tuberculosis[J]. N Engl J Med, 2022, 387(9): 810-823. DOI: 10.1056/NEJMoa2119430.
10.Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care[J]. Drug Des Devel Ther, 2018, 12: 1759-1767. DOI: 10.2147/DDDT.S164515.
11.王华玉, 董士超, 孙伟, 等. 度普利尤单抗治疗重度哮喘的快速卫生技术评估[J]. 中国药房, 2025, 36(6): 648-654. [Wang HY, Dong SC, Sun W, et al. Dupilumab for the treatment of severe asthma:a rapid health technology assessment[J]. China Pharmacy, 2025, 36(6): 648-654.] DOI: 10.6039/j.issn.1001-0408.2025.06.02.
12.Kalil AC, Murthy MH, Hermsen ED, et al. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis[J]. Crit Care Med, 2010, 38(9): 1802-1808. DOI: 10.1097/CCM.0b013e3181eb3b96.
13.Azzam A, Khaled H, Mosa M, et al. Epidemiology of clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and its susceptibility to linezolid and vancomycin in Egypt: a systematic review with meta-analysis[J]. BMC Infect Dis, 2023, 23(1): 263. DOI: 10.1186/s12879-023-08202-2.
14.Kato H, Hagihara M, Asai N, et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus[J]. J Glob Antimicrob Resist, 2021, 24: 98-105. DOI: 10.1016/j.jgar.2020.12.009.
15.Dighriri IM, Alanazi S, AlMutairi K, et al. Efficacy and safety of vancomycin, linezolid, and ceftaroline in the treatment of methicillin-resistant Staphylococcus aureus (MRSA): a systematic review and meta-analysis[J]. Cureus, 2025, 17(1): e77949. DOI: 10.7759/cureus.77949.
16.Zhang X, Falagas ME, Vardakas KZ, et al. Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis[J]. J Thorac Dis, 2015, 7(4): 603-615. DOI: 10.3978/j.issn.2072-1439.2015.03.10.
17.Ju G, Zhang Y, Ye C, et al. Comparative effectiveness and safety of six antibiotics in treating MRSA infections: a network meta-analysis[J]. Int J Infect Dis, 2024, 146: 107109. DOI: 10.1016/j.ijid.2024.107109.
18.Hasan T, Medcalf E, Nyang'wa BT, et al. The safety and tolerability of linezolid in novel short-course regimens containing bedaquiline, pretomanid, and linezolid to treat rifampicin-resistant tuberculosis: an individual patient data meta-analysis[J]. Clin Infect Dis, 2024, 78(3): 730-741. DOI: 10.1093/cid/ciad653.
19.Cheraghi M, Amiri M, Andarzgoo S, et al. Bedaquiline and linezolid regimens for multidrug-resistant tuberculosis: a systematic review and meta-analysis[J]. J Bras Pneumol, 2025, 51(1): e20240391. DOI: 10.36416/1806-3756/e20240391.
20.Singh B, Cocker D, Ryan H, et al. Linezolid for drug-resistant pulmonary tuberculosis[J]. Cochrane Database Syst Rev, 2019, 3(3): CD012836. DOI: 10.1002/14651858.
21.Lin PC, Wang BC, Kim R, et al. Estimating the cost-effectiveness of linezolid for the treatment of methicillin-resistant Staphylococcus aureus nosocomial pneumonia in Taiwan[J]. J Microbiol Immunol Infect, 2016, 49(1): 46-51. DOI: 10.1016/j.jmii.2015.08.002.
22.von Dach E, Morel CM, Murthy A, et al. Comparing the cost-effectiveness of linezolid to trimethoprim/sulfamethoxazole plus rifampicin for the treatment of methicillin-resistant Staphylococcus aureus infection: a healthcare system perspective[J]. Clin Microbiol Infect, 2017, 23(9): 659-666. DOI: 10.1016/j.cmi.2017.02.011.
23.Patel DA, Shorr AF, Chastre J, et al. Modeling the economic impact of linezolid versus vancomycin in confirmed nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus[J]. Crit Care, 2014, 18(4): R157. DOI: 10.1186/cc13996.
24.James LP, Klaassen F, Sweeney S, et al. Impact and cost-effectiveness of the 6-month BPaLM regimen for rifampicin-resistant tuberculosis in Moldova: a mathematical modeling analysis[J]. PLoS Med, 2024, 21(5): e1004401. DOI: 10.1371/journal.pmed.1004401.
25.Gomez GB, Siapka M, Conradie F, et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines[J]. BMJ Open, 2021, 11(12): e051521. DOI: 10.1136/bmjopen-2021-051521.
26.Azimi T, Khoshnood S, Asadi A, et al. Linezolid resistance in multidrug-resistant mycobacterium tuberculosis: a systematic review and meta-analysis[J]. Front Pharmacol, 2022, 13: 955050. DOI: 10.3389/fphar.2022.955050.
27.Huon JF, Boutoille D, Caillon J, et al. Linezolid versus vancomycin cost in the treatment of staphylococcal pneumonia[J]. Med Mal Infect, 2020, 50(3): 252-256. DOI: 10.1016/j.medmal.2019.07.012.
28.Alghanem SS, Soliman MM, Al-Manie S, et al. Effectiveness, safety, and cost of vancomycin and linezolid in Kuwait: a retrospective cohort study[J]. Saudi Pharm J, 2023, 31(11): 101813. DOI: 10.1016/j.jsps.2023.101813.
29.Xu Q, Sang Y, Gao A, et al. The effects of drug-drug interaction on linezolid pharmacokinetics: a systematic review[J]. Eur J Clin Pharmacol, 2024 ,80(6):785-795. DOI: 10.1007/s00228-024-03652-2.