Objective To construct a three-dimensional analysis framework of technology-application-challenge, systematically explore the technical support system, application progress, and practical challenges of artificial intelligence (AI) in the field of hospital pharmacy, and provide reference for the deep integration and development of AI technology in this field.
Methods The analysis focused on the technical systems, application scenarios, and transformation barriers of AI in hospital pharmacy. It outlined the core technical support provided by natural language processing, machine learning, deep learning, and big data analytics. The study also summarized the current application status of these technologies in key aspects of hospital pharmacy and identified the prominent challenges currently faced.
Results At the technological level, natural language processing, machine learning, deep learning, and big data analytics together formed the technological system enabling hospital pharmacy practice. At the application level, AI enhanced efficiency and quality across key domains such as medication management, supply chain optimization, drug dispensing, prescription review and rational use control, chronic disease management with personalized medication guidance, as well as adverse drug reaction management. At the challenge level, the translation of AI technologies still faced difficulties such as barriers to interdisciplinary collaboration, insufficient data-sharing platforms, and a shortage of interdisciplinary talent.
Conclusion In the future, while continuously advancing the development of AI technology, healthcare institutions should enhance high-level technology research, development, and collaboration, emphasize the cultivation of composite talents and the construction of interdisciplinary collaboration mechanisms, Improve data platforms and ethical regulatory systems, in order to promote the deep integration of AI into hospital pharmacy practice and achieve the intelligent transformation of pharmaceutical services.
1.柴人杰, 滕皋军. 人工智能在医药领域的应用与挑战[J]. 药学进展, 2023, 47(10): 721-723. [Chai RJ, Teng GJ. Applications and challenges of artificial intelligence in the medical field[J]. Progress in Pharmaceutical Sciences, 2023, 47(10): 721-723.] DOI: 10.20053/j.issn1001-5094.2023.10.001.
2.Ballester GV, Vicente TC. The role of artificial intelligence in scientific publishing: perspectives from hospital pharmacy[J]. Farm Hosp, 2024, 48(5): 246-251. DOI: 10.1016/j.farma.2024.07.009.
3.Falconer N, Scott I, Barras M. Powered by AI: advancing towards artificial intelligence algorithms in Australian hospital pharmacy[J]. J Pharm Pract Res, 2024, 54(2): 107-109. DOI: 10.1002/JPPR.1922.
4.Benedikt L. Machine learning as a tool to identify inpatients who are not at risk of adverse drug events in a large dataset of a tertiary care hospital in the US[J]. Br J Clin Pharmacol, 2023, 89(12): 3523-3538. DOI: 10.1111/bcp.15846.
5.Taxiarchis B, Kory K. Improving drug safety with adverse event detection using natural language processing[J]. Expert Opin Drug Saf, 2023, 22(8): 659-668. DOI: 10.1080/14740338.2023.2228197.
6.Prashant SK, Piyush SK, Poonam S, et al. Efficient prediction of drug-drug interaction using deep learning models[J]. IET Syst Biol, 2020, 14(4): 211-216. DOI: 10.1049/iet-syb.2019.0116.
7.Pérez GY, Delgado MA, Sesmero MMJ. Approaching artificial intelligence to Hospital Pharmacy[J]. Farm Hosp, 2024, 48(Suppl 1): S35-S44. DOI: 10.1016/j.farma.2024.02.007.
8.付素琴, 郝辰业, 彭骏. 人工智能应用于医院药学服务领域的文献计量学分析[J]. 中国药房, 2024, 35(4): 494-499. [Ren SQ, Hao CY, Peng J. Artificial intelligence application in hospital pharmaceutical service: a bibliometric analysis[J]. China Pharmacy, 2024, 35(4): 494-499.] DOI: 10.6039/j.issn.1001-0408.2024.04.21.
9.宋再伟, 闫盈盈, 杨丽, 等. 中国医院药学服务智慧化建设现状: 一项横断面研究[J]. 中国医院药学杂志, 2023, 43(12): 1392-1396, 1415. [Song ZW, Yan YY, Yang L, et al. Current status of intelligent pharmaceutical care services in China: a cross-sectional study[J]. Chinese Journal of Hospital Pharmacy, 2023, 43(12): 1392-1396, 1415.] DOI: 10.13286/j.1001-5213.2023.12.15.
10.吴青, 冯越, 孔粼. 基于“互联网+人工智能”的智慧临床药学服务模式探索[J]. 卫生软科学, 2025, 39(2): 58-62. [Wu Q, Feng Y, Kong L. Exploration of the intelligent pharmaceutical care model based on "Internet+artificial intelligence" —taking epilepsy in children as an example[J]. Soft Science of Health, 2025, 39(2): 58-62.] DOI: 10.3969/j.issn.1003-2800.2025.02.011.
11.Dsouza SV, Leyens L, Kurian RJ, et al. Artificial intelligence (AI) in pharmacovigilance: a systematic review on predicting adverse drug reactions (ADR) in hospitalized patients[J]. Res Social Adm Pharm, 2025, 21(6): 453-462. DOI: 10.1016/j.sapharm.2025.02.008.
12.Pratik J, Masilamani V, Anirban M. A knowledge graph embedding based approach to predict the adverse drug reactions using a deep neural network[J]. J Biomed Inform, 2022, 13(2): 104122-104131. DOI: 10.1016/j.jbi.2022.104122.
13.Imai S. Data-driven clinical pharmacy research: utilizing machine learning and medical big data[J]. Biol Pharm Bull, 2024, 47(10): 1594-1599. DOI: 10.1248/bpb.b24-00492.
14.闾海荣, 江瑞, 张学工, 等. DeepSeek与医学大语言模型: 技术创新与医疗服务模式重构[J]. 医学信息学杂志, 2025, 46(2): 1-7, 13. [Lu HR, Jiang R, Zhang XG, et al. DeepSeek and medical large language model: technological innovation and reconstruction of medical service mode[J]. Journal of Medical Intelligence, 2025, 46(2): 1-7, 13.] DOI: 10.3969/j.issn.1673-6036.2025.02.001.
15.Zhang X, Tsang SCC, Ford DD, et al. Student pharmacists' perceptions of artificial intelligence and machine learning in pharmacy practice and pharmacy education[J]. Am J Pharm Educ, 2024, 88(12): 101309. DOI: 10.1016/J.AJPE.2024.101309.
16.Sabanayagam C, Banu R, Lim C, et al. Artificial intelligence in chronic kidney disease management: a scoping review[J]. Theranostics, 2025, 15(10): 4566-4578. DOI: 10.7150/thno.108552.
17.Alum UE, Ugwu CPO. Artificial intelligence in personalized medicine: transforming diagnosis and treatment[J]. Disc Appl Sci, 2025, 7(3): 193-193. DOI: 10.1007/S42452-025-06625-X.
18.李雅琴, 刘华, 王芳, 等. 医院集中带量采购品种可替代药品监测和精细化管理探索[J]. 中国药业, 2024, 33(20): 1-6. [Li YQ, Liu H, Wang F, et al. Exploration of monitoring and refined management of alternative medicines for centralized-procurement varieties in the hospital[J]. China Pharmaceuticals, 2024, 33(20): 1-6.] DOI: 10.3969/j.issn.1006-4931.2024.20.001.
19.柴煜莹, 孙怡, 唐婕. 医院新型供应链SPD管理模式在中心药房药品管理中的应用[J]. 中南药学, 2023, 21(8): 2215-2218. [Chai YY, Sun Y, Tang J. New supply-processing-distribution management model of hospital supply chain in the management of central pharmacy[J]. Central South Pharmacy, 2023, 21(8): 2215-2218.] DOI: 10.7539/j.issn.1672-2981.2023.08.043.
20.甘粒, 杨晓东, 张志毅, 等. 服务型机器人在医院药品配送场景中的应用管理与成效分析[J]. 中国卫生资源, 2020, 23(6): 583-588. [Gan L, Yang XD, Zhang ZY, et al. Application management and effectiveness analysis of service robots in hospital medication delivery scenarios[J]. Health Development and Policy Research, 2020, 23(6): 583-588.] DOI: 10.13688/j.cnki.chr.2020.20061.
21.王冠元, 李文莉, 刘婧琳, 等. 全自动智能静脉用药调配机器人ML300在静脉用药调配中心的开发与应用[J]. 中国组织工程研究, 2025, 29(34): 7362-7368. [Wang GY, Li WL, Liu JL, et al. Development and application of fully automated intelligent intravenous medication dispensing robot ML300 in pharmacy intravenous admixture services[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7362-7368.] DOI: 10.12307/2025.896.
22.刘冰, 李聃. 静脉用药调配中心应用智能机器人配置化疗药物的临床效果研究[J]. 西北药学杂志, 2023, 38(6): 227-230. [Liu B, Li D. Clinical effect of applying intelligent robot in pharmacy intravenous admixture services to dispense chemotherapy drugs[J]. Northwest Pharmaceutical Journal, 2023, 38(6): 227-230.] DOI: 10.3969/j.issn.1004-2407.2023.06.039.
23.王丰, 董海燕. 信息药师技术赋能门诊自动发药系统流程重构与优化[J]. 医药导报, 2024, 43(7): 1151-1155. [Wang F, Dong HY. Reconstruction and optimization of outpatient automatic medication dispensing system process based on information pharmacist technology[J]. Herald of Medicine, 2024, 43(7): 1151-1155.] DOI: 10.3870/j.issn.1004-0781.2024.07.024.
24.喻晔, 夏璇, 李力, 等. 口服外摆药智能添加系统在我院单剂量分包工作中的应用[J]. 中国医院药学杂志, 2023, 43(4): 441-444. [Yu Y, Xia X, Li L, et al. Application of dismounted drug intelligent addition system for oral medicine in single-dose packaging work in our hospital[J]. Chinese Journal of Hospital Pharmacy, 2023, 43(4): 441-444.] DOI: 10.13286/j.1001-5213.2023.04.17.
25.朱萍, 周晓颖, 张小亮, 等. 人工智能技术在降低消化内科抗菌药物使用强度中的应用[J]. 药学与临床研究, 2024, 32(6): 517-521. [Zhu P, Zhou XY, Zhang XL, et al. Application of artificial intelligence technology in the management of an-tibiotic usage intensity in the gastroenterology department[J]. Pharmaceutical and Clinical Research, 2024, 32(6): 517-521.] DOI: 10.13664/j.cnki.pcr.2024.06.018.
26.陆昕玥, 朱珠, 赵永根, 等. 基于人工智能的儿童抗菌药物超适应证评估系统设计与应用[J]. 医学信息学杂志, 2024, 45(12): 69-74. [Lu XY, Zhu Z, Zhao YG, et al. Design and application of the children's antibacterial drugs off-label use assessment system based on artificial intelligence[J]. Journal of Medical Intelligence, 2024, 45(12): 69-74.] DOI: 10.3969/j.issn.1673-6036.2024.12.011.
27.王天琳, 蔡乐, 董钊, 等. 基于生成式人工智能大语言模型编写缺血性卒中患者出院用药教育材料的案例研究[J]. 临床药物治疗杂志, 2025, 23(1): 71-76. [Wang TL, Cai L, Dong Z, et al. An case study of preparation of educational materials on discharge medication for ischaemic stroke patients based on a generative artificial intelligence large language model[J]. Clinical Medication Journal, 2025, 23(1): 71-76.] DOI: 10.3969/j.issn.1672-3384.2025.01.013.
28.赵浩宇, 刘芳, 吴昊, 等. 基于人工智能的个体化精准用药系统设计[J]. 医疗卫生装备, 2023, 44(8): 45-49. [Zhao HY, Liu F, Wu H, et al. Design and application of individualized precise medication system based on artificial intelligence[J]. Chinese Medical Equipment Journal, 2023, 44(8): 45-49.] DOI: 10.19745/j.1003-8868.2023160.
29.孙宝, 罗芝英, 傅媛媛, 等. 基于人工智能的肿瘤患者免疫相关不良反应管理软件的应用及效果评价[J]. 中南药学, 2023, 21(8): 2228-2231. [Sun B, Luo ZY, Fu YY, et al. Artificial intelligence-based software in the treatment and management of tumor patients with immune-related adverse reactions[J]. Central South Pharmacy, 2023, 21(8): 2228-2231.] DOI: 10.7539/j.issn.1672-2981.2023.08.046.
30.贾晋生, 刘红亮, 王青, 等. 基于知识图谱联合ERNIE-DPCNN模型的药品不良反应自动关联性评价方法研究[J]. 中国药物警戒, 2024, 21(2): 163-166, 180. [Jia JS, Liu HL, Wang Q, et al. Evaluation of the relevance of adverse drug reaction based on ERNIE-DPCNN[J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 163-166,180.] DOI: 10.19803/j.1672-8629.20230632.