Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 30,2026 No.1 Detail

Exploring the in vitro anti-tumor effect and mechanism of Rumex chalepensis based on network pharmacology

Published on Jan. 31, 2026Total Views: 117 times Total Downloads: 35 times Download Mobile

Author: GUO Changhong 1 YAN Guangjun 1 MIAO Qing 2 LIU Limei 2 XU Jing 2 LIU Chong 1, 3 WANG Yejing 2 XIANG Caiqiong 1, 3

Affiliation: 1. Department of Pharmacy, Department of Spleen and Stomach Diseases, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, Hubei Province, China 2. Institute of Basic Theory Research of Traditonal Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China 3. School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China

Keywords: Rumex chalepensis Network pharmacology Gastric cancer PI3K/Akt signaling pathway Apoptosis Cell cycle arrest Multi-target action Natural anti-tumor drug

DOI: 10.12173/j.issn.2097-4922.202509053

Reference: GUO Changhong, YAN Guangjun, MIAO Qing, LIU Limei, XU Jing, LIU Chong, WANG Yejing, XIANG Caiqiong. Exploring the in vitro anti-tumor effect and mechanism of Rumex chalepensis based on network pharmacology[J]. Yaoxue QianYan Zazhi, 2026, 30(1): 2-11. DOI:10.12173/j.issn.2097-4922.202509053.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the antitumor effect of Rumex chalepensis and its underlying molecular mechanism.

Methods  The inhibitory effect of Rumex chalepensis on the proliferation of four tumor cell lines (A549, AGS, HCT116, and HepG2) was detected using the MTT assay. After screening sensitive cell lines, flow cytometry combined with Annexin V-FITC/PI double staining was used to analyze cell cycle distribution and apoptosis. Based on network pharmacology, the active components and their corresponding targets were systematically screened. A drug-disease target network was constructed, and protein-protein interaction analysis was used to identify core targets. GO functional enrichment and KEGG pathway enrichment analyses were performed to predict the potential mechanisms of action.

Results  Rumex chalepensis had the strongest anti-proliferative effect on AGS gastric cancer cells, significantly inducing cell cycle arrest at the G2/M phase and promoting apoptosis. Network pharmacology analysis identified 10 active components and 216 common targets. Pathway analysis indicated that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), mitogen-activated protein kinase signaling pathway (MAPK), hypoxia-inducible factor-1 (HIF-1) and other signaling pathways might be involved in the regulatory process, among which the PI3K-Akt pathway might be the core regulatory pathway.

Conclusion  Rumex chalepensis inhibits the growth of AGS gastric cancer cells through multi-target synergistic effects, particularly by regulating the PI3K-Akt signaling pathway.

Full-text
Please download the PDF version to read the full text: download
References

1.许京, 王瑞海, 苗青, 等. 网果酸模基础研究及临床应用概况[J]. 中国中医基础医学杂志, 2020, 26(9): 1362-1365, 1389. [Xu J, Wang RH, Miao Q, et al. Research progress of the chemical composition, pharmacological action and clinical application of Rumex chalepensis Mill[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2020, 26(9): 1362-1365, 1389.] DOI:10.3969/j.issn.1006-3250.2020.09.038.

2.中国医学科学院药物研究所, 编著. 中药志(第一册)[M]. 北京: 人民卫生出版社, 1979: 37.

3.谢宗万, 编著. 中药材正名词典[M]. 北京: 北京科学技术出版社, 2004: 33

4.中国科学院中国植物志编辑委员会, 编. 中国植物志·第25卷. 第一分册[M]. 北京: 科学出版社, 2004: 160.

5.邱颂平, 编著.大黄的药学与临床研究[M]. 北京: 中国中医药出版社, 2007: 36.

6.郑水庆. 酸模属药用植物的生药鉴定与资源利用研究[D]. 上海: 第二军医大学, 2001. DOI: 10.7666/d.y405025.

7.许京, 王瑞海, 苗青, 等. 基于UPLC-Q-TOF-MS的网果酸模化学成分分析[J].中药材, 2020, 43(5): 1143-1146. [Xu  J, Wang RH, Miao Q, et al. Chemical constitutions of Rumex chalepensis based on UPLC-Q-TOF-MS[J]. Journal of Chinese Medicinal Materials, 2020, 43(5): 1143-1146.] DOI: 10.13863/j.issn1001-4454.2020.05.020.

8.许京. 金不换(网果酸模)药材及科研制剂的基础研究[D]. 北京: 中国中医科学院, 2019. https://cdmd.cnki.com.cn/Article/CDMD-84502-1019240680.htm.

9.刘春宏, 钱薇, 张飞, 等. 大黄素通过糖酵解代谢途径抑制胃癌细胞FOXD1表达的研究[J]. 中药药理与临床, 2025, 41(1): 90-94. [Liu CH, Qian W, Zhang F, et al. Inhibition of FOXD1 gene expression in gastric cancer cells by emodin through glycolytic metabolism pathway[J]. Pharmacology and Clinics of Chinese Materia Medica, 2025, 41(1): 90-94.] DOI: 10.13412/j.cnki.zyyl.20240514.001.

10.田翀, 高青. 水飞蓟宾对胃癌细胞BGC-823周期停滞的诱导作用及机制探讨[J]. 中国临床药理学杂志, 2019, 35(20): 2605-2608. [Tian C, Gao Q. Induction and mechanism of silibinin on BGC823 cycle stagnation in gastric cancer cells[J]. Chinese Journal of Clinical Pharmacology, 2019, 35(20): 2605-2608.] DOI: 10.13699/j.cnki.1001-6821.2019.20.020.

11.罗本武, 刘冲, 王雪梅, 等. 基于网络药理学与分子对接探讨网果酸模治疗消化性溃疡作用机制[J]. 亚太传统医药, 2025, 21(5): 137-144. [Luo BW, Liu C, Wang XM, et al. Mechanism of Rumex chalepensis Mill. in the treatment of peptic ulcer disease based on network pharmacology and molecular docking[J]. Asia-Pacific Traditional Medicine, 2025, 21(5): 137-144.] DOI: 110.11954/ytctyy.202505027.

12.Zeng J, Hills SA, Ozono E, et al. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication[J]. Cell, 2023, 186(3): 528-542. e14. DOI: 10.1016/j.cell.2022.12.036.

13.许涛, 黄慧群, 高羽亭. 细胞凋亡在肿瘤微环境中的研究进展[J]. 广东医科大学学报, 2024, 42(5): 501-506. [Xu T, Huang HQ, Gao YT. Research progress on the role of apoptosis in the tumor microenvironment[J]. Journal of Guangdong Medical College, 2024, 42(5): 501-506.] DOI: 10.3969/j.issn.1005-4057.2024.05.010.

14.Lei ZN, Teng QX, Tian Q, et al. Signaling pathways and therapeutic interventions in gastric cancer[J]. Signal Transduct Target Ther, 2022, 7(1): 358. DOI: 10.1038/s41392-022-01190-w.

15.Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022, 85: 69-94. DOI: 10.1016/j.semcancer.2021.06.019.

16.Zou S, Tong Q, Liu B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 145. DOI: 10.1186/s12943-020-01258-7.

17.Zhang JY, Zhang F, Hong CQ, et al. Critical protein GAPDH and its regulatory mechanisms in cancer cells[J]. Cancer Biol Med, 2015, 12(1): 10-22. DOI: 10.7497/j.issn.2095-3941.2014.0019.

18.Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer[J]. J Clin Invest, 2016, 126(10): 3689-3698. DOI: 10.1172/JCI84430.

19.Salazar G, González A. Novel mechanism for regulation of epidermal growth factor receptor endocytosis revealed by protein kinase A inhibition[J]. Mol Biol Cell, 2002, 13(5): 1677-1693. DOI: 10.1091/mbc.01-08-0403.

20.刘婉秋, 高敬林, 冯章英, 等. 多靶点酪氨酸激酶抑制剂治疗恶性肿瘤的群体药动学研究进展[J]. 中国药学杂志, 2020, 55(13): 1060-1067. [Liu WQ, Gao JL, Feng ZY, et al. Research progress on population pharmacokinetics of multi-target tyrosine kinase inhibitors in the treatment of malignant tumors[J]. Chinese Pharmaceutical Journal, 2020, 55(13): 1060-1067.] DOI: 10.11669/cpj.2020.13.002.

21.刘婷, 迟文成, 韩路拓, 等. PI3K/Akt信号通路对胃癌的作用机制及中医药治疗研究进展[J]. 现代中西医结合杂志, 2024, 33(22): 3194-3201. [Liu T, Chi WC, Han L T, et al. Mechanism of PI3K/Akt signaling pathway in gastric cancer and research progress in traditional Chinese medicine treatment [J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2024, 33(22): 3194-3201.] DOI: 10.3969/j.issn.1008-8849.2024.22.026.

Popular papers
Last 6 months